Sec. 4.16 An Example 73

routers
ETHERNET
128.10.0.0 / \
TOKEN
RING ARPANET
192.5.48.0 10.0.0.0

Figure 4.5 The logical connection of two networks to the Internet backbone.
Each network has been assigned an IP address.

The example shows three networks and the network numbers they have been as-
signed: the ARPANET (10.0.0.0), an Ethernet (128.10.0.0), and a token ring network
(192.5.48.0). According to the table in Figure 4.3, the addresses have classes A, B, and
C, respectively.

Figure 4.6 shows the same networks with host computers attached and Internet ad-
dresses assigned to each network connection.

ETHERNET 128.10.0.0

128.10.2.3 128.10.2.8 128.10.2.26
MERLIN GUENEVERE LANCELOT
(multi-homed (Ethernet (Ethernet
host) host) host)

192.5.48.3

GLATISANT
(router)

128.10.2.70 192.5.48.7

TALIESYN

TOKEN (router)
RING 192.5.48.6 10.0.0.37

192.5% To ARPANET

192.5.48.1

ARTHUR
(token ring
host)

Figure 4.6 Example IP address assignment for routers and hosts attached to
the three networks in the previous figure.



74 Classful Internet Addresses Chap. 4

In the figure, four hosts labeled Arthur, Merlin, Guenevere, and Lancelot, attach to
the networks, Taliesyn is a router that connects the ARPANET and the token ring net-
work, and Glatisant is a router that connects the token ring network to the Ethernet.
Host Merlin has connections to both the Ethernet and the token ring network, so it can
reach destinations on either network directly. Although a multi-homed host like Merlin
can be configured to route packets between the two nets, most sites use dedicated com-
puters as routers to avoid overloading conventional computer systems with the process-
ing required for routing. In the figure, a dedicated router, Glatisant, performs the task
of routing traffic between the Ethernet and token ring networks. (Note: actual traffic
between these two networks was higher than this configuration suggests because the fig-
ure only shows a few of the computers attached to the nets.)

As Figure 4.5 shows, an IP address must be assigned to each network connection.
Lancelot, which connects only to the Ethernet, has been assigned 128.10.2.26 as its only
IP address. Merlin has address 128.10.2.3 for its connection to the Ethernet and
192.5.48.3 for its connection to the token ring network. Whoever made the address as-
signment chose the same value for the low-order byte of each address. The addresses
assigned to routers Glatisant and Taliesyn do not follow the convention. For example,
Taliesyn’s addresses, 10.0.0.37 and 192.5.48.6, are two completely unrelated strings of
digits. IP does not care whether any of the bytes in the dotted decimal form of a
computer’s addresses are the same or different. However, network technicians,
managers, and administrators may need to use addresses for maintenance, testing, and
debugging. Choosing to make all of a computer’s addresses end with the same octet
makes it easier for humans to remember or guess the address of a particular interface.

4.17 Network Byte Order

To create an internet that is independent of any particular vendor’s machine archi-
tecture or network hardware, the software must define a standard representation for data.
Consider what happens, for example, when software on one computer sends a 32-bit
binary integer to another computer. The physical transport hardware moves the se-
quence of bits from the first machine to the second without changing the order. How-
ever, not all architectures store 32-bit integers in the same way. On some (called Little
Endian), the lowest memory address contains the low-order byte of the integer. On oth-
ers (called Big Endian), the lowest memory address holds the high-order byte of the in-
teger. Still others store integers in groups of 16-bit words, with the lowest addresses
holding the low-order word, but with bytes swapped. Thus, direct copying of bytes
from one machine to another may change the value of the number.

Standardizing byte-order for integers is especially important in an internet because
internet packets carry binary numbers that specify information like destination addresses
and packet lengths. Such quantities must be understood by both the senders and re-
ceivers. The TCP/IP protocols solve the byte-order problem by defining a network
standard byte order that all machines must use for binary fields in internet packets.
Each host or router converts binary items from the local representation to network stan-
dard byte order before sending a packet, and converts from network byte order to the
host-specific order when a packet arrives. Naturally, the user data field in a packet is



Sec. 4.17 Network Byte Order 75

exempt from this standard because the TCP/IP protocols do not know what data is being
carried — application programmers are free to format their own data representation and
translation. When sending integer values, many application programmers do choose to
follow the TCP/IP byte-order standards. Of course, users who merely invoke applica-
tion programs never need to deal with the byte order problem directly.

The internet standard for byte order specifies that integers are sent with the most
significant byte first (i.e., Big Endian style). If one considers the successive bytes in a
packet as it travels from one machine to another, a binary integer in that packet has its
most significant byte nearest the beginning of the packet and its least significant byte
nearest the end of the packet. Many arguments have been offered about which data
representation should be used, and the internet standard still comes under attack from
time to time. In particular, proponents of change argue that although most computers
were big endian when the standard was defined, most are now little endian. However,
everyone agrees that having a standard is crucial, and the exact form of the standard is
far less important.

4.18 Summary

TCP/IP uses 32-bit binary addresses$ as universal machine identifiers. Called Inter-
net Protocol addresses or IP addresses, the identifiers are partitioned into two parts: a
prefix identifies the network to which the computer attaches and the suffix provides a
unique identifier for the computer on that network. The original IP addressing scheme
is known as classful, with each prefix assigned to one of three primary classes. Leading
bits define the class of an address; the classes are of unequal size. The classful scheme
provides for 127 networks with over a million hosts each, thousands of networks with
thousands of hosts each, and over a million networks with up to 254 hosts each. To
make such addresses easier for humans to understand, they are written in dotted decimal
notation, with the values of the four octets written in decimal, separated by decimal
points.

Because the IP address encodes network identification as well as the identification
of a specific host on that network, routing is efficient. An important property of IP ad-
dresses is that they refer to network connections. Hosts with multiple connections have
multiple addresses. One advantage of the internet addressing scheme is that the form
includes an address for a specific host, a network, or all hosts on a network (broadcast).
The biggest disadvantage of the IP addressing scheme is that if a machine has multiple
addresses, knowing one address may not be sufficient to reach it when no path exists to
the specified interface (e.g., because a particular network is unavailable).

To permit the exchange of binary data among machines, TCP/IP protocols enforce
a standard byte ordering for integers within protocol fields. A host must convert all
binary data from its internal form to network standard byte order before sending a pack-
et, and it must convert from network byte order to internal order upon receipt.



76 Classful Internet Addresses Chap. 4

FOR FURTHER STUDY

The internet addressing scheme presented here can be found in Reynolds and Pos-
tel [RFC 1700]; further information can be found in Stahl, Romano, and Recker [RFC
1117].

Several important additions have been made to the Internet addressing scheme over
the years; later chapters cover them in more detail. Chapter 10 discusses an important
extension called classless addressing that permits the division between prefix and suffix
to occur at an arbitrary bit position. In addition, Chapter 10 examines an essential part
of the Internet address standard called subnet addressing. Subnet addressing allows a
single network address to be used with multiple physical networks. Chapter 17 contin-
ues the exploration of IP addresses by describing how class D addresses are assigned
for internet multicast.

Cohen [1981] explains bit and byte ordering, and -introduces the terms ‘‘Big Endi-
an’’ and ‘‘Little Endian.”’

EXERCISES

4.1 Exactly how many class A, B, and C networks can exist? Exactly how many hosts can a
network in each class have? Be careful to allow for broadcast as well as class D and E ad-
dresses.

4.2 A machine readable list of assigned addresses is sometimes called an internet host table. If
your site has a host table, find out how many class A, B, and C network numbers have been
assigned.

43 How many hosts are attached to each of the local area networks at your site? Does your
site have any local area networks for which a class C address is insufficient?

4.4 What is the chief difference between the IP addressing scheme and the U.S. telephone
numbering scheme?

4.5 A single central authority cannot manage to assign Internet addresses fast enough to accom-
modate the demand. Can you invent a scheme that allows the central authority to divide its
task among several groups but still ensure that each assigned address is unique?

4.6 Does network standard byte order differ from your local machine’s byte order?

4.7 How many IP addresses would be needed to assign a unique IP address to every house in
your country? the world? Is the IP address space sufficient?



5

Mapping Internet Addresses
To Physical Addresses
(ARP)

5.1 Introduction

We described the TCP/IP address scheme in which each host is assigned a 32-bit
address, and said that an internet behaves like a virtual network, using only the assigned
addresses when sending and receiving packets. We also reviewed several network
hardware technologies, and noted that two machines on a given physical network can
communicate only if they know each other’s physical network address. What we have
not mentioned is how a host or a router maps an IP address to the correct physical ad-
dress when it needs to send a packet across a physical net. This chapter considers that
mapping, showing how it is implemented for the two most common physical network
address schemes.

5.2 The Address Resolution Problem

Consider two machines A and B that connect to the same physical network. Each
has an assigned IP address Ix and /s and a physical address Pa and Ps. The goal is to
devise low-level software that hides physical addresses and allows higher-level pro-
grams to work only with internet addresses. Ultimately, however, communication must
be carried out by physical networks using whatever physical address scheme the under-
lying network hardware supplies. Suppose machine A wants o send a packet to

77



78 Mapping Internet Addresses To Physical Addresses (ARP) Chap. §

machine B across a physical network to which they both attach, but A has only B’s in-
ternet address /5. The question arises: how does A map that address to B’s physical ad-
dress, Ps?

Address mapping must be performed at each step along a path from the original
source to the ultimate destination. In particular, two cases arise. First, at the last step
of delivering a packet, the packet must be sent across one physical network to its final
destination. The computer sending the packet must map the final destination’s Internet
address to the destination’s physical address. Second, at any point along the path from
the source to the destination other than the final step, the packet must be sent to an in-
termediate router. Thus, the sender must map the intermediate router’s Internet address
to a physical address.

The problem of mapping high-level addresses to physical addresses is known as
the address resolution problem and has been solved in several ways. Some protocol
suites keep tables in each machine that contain pairs of high-level and physical ad-
dresses. Others solve the problem by encoding hardware addresses in high-level ad-
dresses. Using either approach exclusively makes high-level addressing awkward at
best. This chapter discusses two techniques for address resolution used by TCP/IP pro-
tocols and shows when each is appropriate.

5.3 Two Types Of Physical Addresses

There are two basic types of physical addresses, exemplified by the Ethernet,
which has large, fixed physical addresses, and proNET, which has small, easily config-
ured physical addresses. Address resolution is difficult for Ethernet-like networks, but
easy for networks like proNET. We will consider the easy case first.

5.4 Resolution Through Direct Mapping

Consider a proNET token ring network. Recall from Chapter 2 that proNET uses
small integers for physical addresses and allows the user to choose a hardware address
when installing an interface board in a computer. The key to making address resolution
easy with such network hardware lies in observing that as long as one has the freedom
to choose both IP and physical addresses, they can be selected such that parts of them
are the same. Typically, one assigns IP addresses with the hostid portion equal to 1, 2,
3, and so on, and then, when installing network interface hardware, selects a physical
address that corresponds to the IP address. For example, the system administrator
would select physical address 3 for a computer with the IP address 192.5.48.3 because
192.5.48.3 is a class C address with the host portion equal to 3.

For networks like proNET, computing a physical address from an IP address is
trivial. The computation consists of extracting the host portion of the IP address. Ex-
traction is computationally efficient on most architectures because it requires only a few
machine instructions. The mapping is easy to maintain because it can be performed



Sec. 5.4 Resolution Through Direct Mapping 79

without reference to external data. Finally, new computers can be added to the network
without changing existing assignments or recompiling code.

Conceptually, choosing a numbering scheme that makes address resolution effi-
cient means selecting a function f that maps IP addresses to physical addresses. The
designer may be able to select a physical address numbering scheme as well, depending
on the hardware. Resolving IP address Is means computing

Pa = f(Is)

We want the computation of f to be efficient. If the set of physical addresses is con-
strained, it may be possible to arrange efficient mappings other than the one given in
the example above. For instance, when using IP over a connection-oriented network
such as ATM, one cannot choose physical addresses. On such networks, one or more
computers (servers) store pairs of addresses, where each pair contains an Internet ad-
dress and the corresponding physical address. Typically, such servers store the pairs in
a table in memory to speed searching. To guarantee efficient address resolution in such
cases, software can use a conventional hash function to search the table. Exercise 5.1
suggests a related alternative.

5.5 Resolution Through Dynamic Binding

To understand why address resolution is difficult for some networks, consider Eth-
ernet technology. Recall from Chapter 2 that each Ethernet interface is assigned a 48-
bit physical address when the device is manufactured. As a consequence, when
hardware fails and requires that an Ethernet interface be replaced, the machine’s physi-
cal address changes. Furthermore, because the Ethernet address is 48 bits long, there is
no hope it can be encoded in a 32-bit IP address?.

Designers of TCP/IP protocols found a creative solution to the address resolution
problem for networks like the Ethernet that have broadcast capability. The solution al-
lows new hosts or routers to be added to the network without recompiling code, and
does not require maintenance of a centralized database. To avoid maintaining a table of
mappings, the designers chose to use a low-level protocol to bind addresses dynamical-
ly. Termed the Address Resolution Protocol (ARP), the protocol provides a mechanism
that is both reasonably efficient and easy to maintain.

As Figure 5.1 shows, the idea behind dynamic resolution with ARP is simple:
when host A wants to resolve IP address /s, it broadcasts a special packet that asks the
host with IP address Is to respond with its physical address, Ps. All hosts, including B,
receive the request, but only host B recognizes its IP address and sends a reply that con-
tains its physical address. When A receives the reply, it uses the physical address to
send the internet packet directly to B. We can summarize:

tBecause direct mapping is more convenient and efficient than dynamic binding. the next generation of
IP is being designed to allow 48-bit hardware addresses to be encoded in IP addresses.



80 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

The Address Resolution Protocol, ARP, allows a host to find the phy-
sical address of a target host on the same physical network, given
only the target’s IP address.

U s

(a)

(b)

Figure 5.1 The ARP protocol. To determine Ps, B’s physical address, from
I, its IP address, (a) host A broadcasts an ARP request containing
I8 10 all machines on the net, and (b) host B responds with an
ARP reply that contains the pair (/s, Ps).

5.6 The Address Resolution Cache

It may seem silly that for A to send a packet to B it first sends a broadcast that
reaches B. Or it may seem even sillier that A broadcasts the question, ‘*how can I reach
you?”” instead of just broadcasting the packet it wants to deliver. But there is an impor-
tant reason for the exchange. Broadcasting is far too expensive to be used every time
one machine needs to transmit a packet to another because every machine on the net-
work must receive and process the broadcast packet.



Sec. 5.7 ARP Cache Timeout 81
5.7 ARP Cache Timeout

To reduce communication costs, computers that use ARP maintain a cache of re-
cently acquired IP-to-physical address bindings. That is, whenever a computer sends an
ARP request and receives an ARP reply, it saves the IP address and corresponding
hardware address information in its cache for successive lookups. When transmitting a
packet, a computer always looks in its cache for a binding before sending an ARP re-
quest. If it finds the desired binding in its ARP cache, the computer need not broadcast
on the network. Thus, when two computers on a network communicate, they begin
with an ARP request and response, and then repeatedly transfer packets without using
ARP for each one. Experience shows that because most network communication in-
volves more than one packet transfer, even a small cache is worthwhile.

The ARP cache provides an example of soft state, a technique commonly used in
network protocols. The name describes a situation in which information can become
“‘stale” without warning. In the case of ARP, consider two computers, A and B, both
connected to an Ethernet. Assume A has sent an ARP request, and B has replied.
Further assume that after the exchange B crashes. Computer A will not receive any no-
tification of the crash. Moreover, because it already has address binding information for
B in its ARP cache, computer A will continue to send packets to B. The Ethernet
hardware provides no indication that B is not on-line because Ethernet does not have
guaranteed delivery. Thus, A has no way of knowing when information in its ARP
cache has become incorrect.

To accommodate soft state, responsibility for correctness lies with the owner of the
information. Typidally, protocols that implement soft state use timers, with the state in-
formation being deleted when the timer expires. For example, whenever address bind-
ing information is placed in an ARP cache, the protocol requires a timer to be set, with
a typical timeout being 20 minutes. When the timer expires, the information must be
removed. After removal there are two possibilities. If no further packets are sent to the
destination, nothing occurs. If a packet must be sent to the destination and there is no
binding present in the cache, the computer follows the normal procedure of broadcasting
an ARP request and obtaining the binding. If the destination is still reachable, the bind-
ing will again be placed in the ARP cache. If not, the sender will discover that the des-
tination is off-line.

The use of soft state in ARP has advantages and disadvantages. The chief advan-
tage arises from autonomy. First, a computer can determine when information in its
ARP cache should be revalidated independent of other computers. Second, a sender
does not need successful communication with the receiver or a third party to determine
that a binding has become invalid; if a target does not respond to an ARP request, the
sender will declare the target to be down. Third, the scheme does not rely on network
hardware to provide reliable transfer. The chief disadvantage of soft state arises from
delay — if the timer interval is N seconds, a sender may not detect that a receiver has
crashed until N seconds elapse.



82 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5
5.8 ARP Refinements

Several refinements of ARP have been included in the protocol. First, observe that
if host A is about to use ARP because it needs to send to B, there is a high probability
that host B will need to send to A in the near future. To anticipate B’s need and avoid
extra network traffic, A includes its IP-to-physical address binding when sending B a re-
quest. B extracts A’s binding from the request, saves the binding in its ARP cache, and
then sends a reply to A. Second, notice that because A broadcasts its initial request, all
machines on the network receive it and can extract and update A’s IP-to-physical ad-
dress binding in their cache. Third, when a computer has its host interface replaced,
(e.g., because the hardware has failed) its physical address changes. Other computers
on the net that have stored a binding in their ARP cache need to be informed so they
can change the entry. The computer can notify others of a new address by sending an
ARP broadcast when it boots.

The following rule summarizes refinements:

The sender’s IP-to-physical address binding is included in every ARP
broadcast; receivers update the IP-to-physical address binding infor-
mation in their cache before processing an ARP packet.

5.9 Relationship Of ARP To Other Protocols

ARP provides one possible mechanism to map from IP addresses to physical ad-
dresses; we have already seen that some network technologies do not need it. The point
is that ARP would be completely unnecessary if we could make all network hardware
recognize IP addresses. Thus, ARP merely imposes a new address scheme on top of
whatever low-level address mechanism the hardware uses. The idea can be summar-
ized:

ARP is a low-level protocol that hides the underlying network physi-
cal addressing, permitting one to assign an arbitrary IP address to
every machine. We think of ARP as part of the physical network sys-
tem, and not as part of the internet protocols.

5.10 ARP Implementation

Functionally, ARP is divided into two parts. The first part maps an IP address to a
physical address when sending a packet, and the second part answers requests from oth-
er machines. Address resolution for outgoing packets seems straightforward, but small
details complicate an implementation. Given a destination IP address the software con-
sults its ARP cache to see if it knows the mapping from IP address to physical address.



Sec. 5.10 ARP Implementation 83

If it does, the software extracts the physical address, places the data in a frame using
that address, and sends the frame. If it does not know the mapping, the software must
broadcast an ARP request and wait for a reply.

Broadcasting an ARP request to find an address mapping can become complex.
The target machine can be down or just too busy to accept the request. If so, the sender
may not receive a reply or the reply may be delayed. Because the Ethernet is a best-
effort delivery system, the init*al ARP broadcast request can also be lost (in which case
the sender shou!d retransmit, at least once). Meanwhile, the host must store the original
outgoing packet so it can be sent once the address has been resolvedt. In fact, the host
must decide whether to allow other application programs to proceed while it processes
an ARP request (most do). If so, the software must handle the case where an applica-
tion generates additional ARP requests for the same address without broadcasting multi-
ple requests for a given target.

Finally, consider the case where machine A has obtained a binding for machine B,
but then B's hardware fails and is replaced. Although B’s address has changed, A’s
cached binding has not, so A uses a nonexistent hardware address, making successful re-
ception impossible. This case shows why it is important to have ARP software treat its
table of bindings as a cache and remove entries after a fixed period. Of course, the ti-
mer for an entry in the cache must be reset whenever an ARP broadcast arrives contain-
ing the binding (but it is not reset when the entry is used to send a packet).

The second part of the ARP code handles ARP packets that arrive from the net-
work. When an ARP packet arrives, the software first extracts the sender’s IP address
and hardware address pair, and examines the local cache to see if it already has an entry
for the sender. If a cache entry exists for the given IP address, the handler updates that
entry by overwriting the physical address with the physical address obtained from the
packet. The receiver then processes the rest of the ARP packet.

A receiver must handle two types of incoming ARP packets. If an ARP request ar-
rives, the receiving machine must see if it is the target of the request (i.e., some other
machine has broadcast a request for the receiver’s physical address). If so, the ARP
software forms a reply by supplying its physical hardware address, and sends the reply
directly back to the requester. The receiver also adds the sender’s address pair to its
cache if the pair is not already present. If the IP address mentioned in the ARP request
does not match the local IP address, the packet is requesting a mapping for some other
machine on the network and can be ignored.

The other interesting case occurs when an ARP reply arrives. Depending on the
implementation, the handler may need to create a cache entry, or the entry may have
been created when the request was generated. In any case, once the cache has been up-
dated, the receiver tries to match the reply with a previously issued request. Usually,
replies arrive in response to a request, which was generated because the machine has a
packet to deliver. Between the time a machine broadcasts its ARP request and receives
the reply, application programs or higher-level protocols may generate additional re-
quests for the same address; the software must remember that it has already sent a re-
quest and not send more. Usually, ARP software places the additional packets on a
queue. Once the reply arrives and the address binding is known, the ARP software re-

t1f the delay is significant, the host may choose to discard the outgoing packet(s).



84 Mapping Internet Addresses To Physical Addresses (ARP) Chap. 5

moves packets from the queue, places each packet in a frame, and uses the address
binding to fill in the physical destination address. If it did not previously issue a re-
quest for the IP address in the reply, the machine updates the sender’s entry in its cache,
and then simply stops processing the packet.

5.11 ARP Encapsulation And Identification

When ARP messages travel from one machine to another, they must be carried in
physical frames. Figure 5.2 shows that the ARP message is carried in the data portion
of a frame.

ARP MESSAGE

FRAME

HEADER FRAME DATA AREA

Figure 5.2 An ARP message encapsulated in a physical network frame.

To identify the frame as carrying an ARP message, the sender assigns a special value to
the type field in the frame header, and places the ARP message in the frame’s data
field. When a frame arrives at a computer, the network software uses the frame type to
determine its contents. In most technologies, a single type value is used for all frames
that carry an ARP message — network software in the receiver must further examine
the ARP message to distinguish between ARP requests and ARP replies. For example,
on an Ethernet, frames carrying ARP messages have a type field of 0806,,. This is a
standard value assigned by the authority for Ethernet; other network hardware technolo-
gies use other values.

5.12 ARP Protocol Format

Unlike most protocols, the data in ARP packets does not have a fixed-format
header. Instead, to make ARP useful for a variety of network technologies, the length
of fields that contain addresses depend on the type of network. However, to make it
possible to interpret an arbitrary ARP message, the header includes fixed fields near the
beginning that specify the lengths of the addresses found in succeeding fields. In fact,
the ARP message format is general enough to allow it to be used with arbitrary physical
addresses and arbitrary protocol addresses. The example in Figure 5.3 shows the 28-
octet ARP message format used on Ethernet hardware (where physical addresses are



Sec. 5.12 ARP Protocol Format 85

48-bits or 6 octets long), when resolving IP protocol addresses (which are 4 octets
long).

Figure 5.3 shows an ARP message with 4 octets per line, a format that is standard
throughout this text. Unfortunately, unlike most of the remaining protocols, the
variable-length fields in ARP packets do not align neatly on 32-bit boundaries, making
the diagram difficuit to read. For example, the sender’s hardware address, labeled
SENDER HA, occupies 6 contiguous octets, so it spans two lines in the diagram.

0 8 16 24 31
HARDWARE TYPE PROTOCOL TYPE
HLEN J PLEN OPERATION
SENDER HA (octets 0-3)

SENDER HA (octets 4-5) SENDER IP (octets 0-1)
SENDER IP (octets 2-3) TARGET HA (octets 0-1)
TARGET HA (octets 2-5)

TARGET IP (octets 0-3)

Figure 5.3 An example of the ARP/RARP message format when used for IP-
to-Ethernet address resolution. The length of ficlds depends on
the hardware and protocol address lengths, which are 6 octets for
an Ethernet address and 4 octets for an IP address.

Field HARDWARE TYPE specifies a hardware interface type for which the sender
seeks an answer; it contains the value I for Ethernet. Similarly, field PROTOCOL
TYPE specifies the type of high-level protocol address the sender has supplied; it con-
tains 0800,, for IP addresses. Field OPERATION specifies an ARP request (1), ARP
response (2), RARPY request (3), or RARP response (4). Fields HLEN and PLEN allow
ARP to be used with arbitrary networks because they specify the length of the hardware
address and the length of the high-level protocol address. The sender supplies its
hardware address and IP address, if known, in fields SENDER HA and SENDER IP.

When making a request, the sender also supplies the target hardware address
(RARP) or target IP address (ARP), using fields TARGET HA or TARGET IP. Before
the target machine responds, it fills in the missing addresses, swaps the target and
sender pairs, and changes the operation to a reply. Thus, a reply carries the IP and
hardware addresses of the original requester, as well as the IP and hardware addresses
of the machine for which a binding was sought.

+The next chapter describes RARP, another protocol that uses the same message format.



86 Mapping Internet Addresses To Physical Addresses (ARP) Chap. §
5.13 Summary

IP addresses are assigned independent of a machine’s physical hardware address.
To send an internet packet across a physical net from one computer to another, the net-
work software must map the IP address into a physical hardware address and use the
hardware address to transmit the frame. If hardware addresses are smaller than IP ad-
dresses, a direct mapping can be established by having the machine’s physical address
encoded in its IP address. Otherwise, the mapping must be performed dynamically.
The Address Resolution Protocol (ARP) performs dynamic address resolution, using
only the low-level network communication system. ARP permits machines to resolve
addresses without keeping a permanent record of bindings.

A machine uses ARP to find the hardware address of another machine by broad-
casting an ARP request. The request contains the IP address of the machine for which a
hardware address is needed. All machines on a network receive an ARP request. If the
request matches a machine’s IP address, the machine responds by sending a reply that
contains the needed hardware address. Replies are directed to one machine; they are
not broadcast.

To make ARP efficient, each machine caches IP-to-physical address bindings. Be-
cause internet traffic tends to consist of a sequence of interactions between pairs of
machines, the cache eliminates most ARP broadcast requests.

FOR FURTHER STUDY

The address resolution protocol used here is given by Plummer [RFC 826] and has
become a TCP/IP internet protocol standard. Dalal and Printis [1981] describes the re-
lationship between Ethernet and IP addresses, and Clark [RFC 814] discusses addresses
and bindings in general. Parr [RFC 1029] discusses fault tolerant address resolution.
Kirkpatrick and Recker [RFC 1166] specifies values used to identify ‘network frames in
the Internet Numbers document. Volume 2 of this text presents an example ARP im-
plementation, and discusses the caching policy.

EXERCISES

5.1 Given a small set of physical addresses (positive integers), can you find a function f and an
assignment of IP addresses such that f maps the IP addresses 1-to-1 onto the physical ad-
dresses and computing f is efficient? (Hint: look at the literature on perfect hashing).

5.2 In what special cases does a host connected to an Ethernet not need to use ARP or an ARP
cache before transmitting ap IP datagram?



53

54

5.5

5.6

5.7

58

59

5.10

511

Exercises 87

One common algorithm for managing the ARP cache replaces the least recently used entry
when adding a new one. Under what circumstances can this algorithm produce unneces-
sary network traffic?

Read the standard carefully. Should ARP update the cache if an old entry already exists for
a given IP address? Why or why not?

Should ARP software modify the cache even when it receives information without specifi-
cally requesting it? Why or why not?

Any implementation of ARP that uses a fixed-size cache can fail when used on a network
that has many hosts and much ARP traffic. Explain how.

ARP is often cited as a security weakness. Explain why.

Suppose an (incorrect) ARP implementation does not remove cache entries if they are fre-
quently used. Explain what can happen if the hardware address field in an ARP response
becomes corrupted during transmission.

Suppose machine C receives an ARP request sent from A looking for target B, and suppose
C has the binding from /s to Ps in its cache. Should C answer the request? Explain. '
How can a workstation use ARP when it boots to find out if any other machine on the net-
work is impersonating it? What are the disadvantages of the scheme?

Explain how sending IP packets to nonexistent addresses on a remote Ethernet can generate
excess broadcast traffic on that network.






6

Determining An Internet
Address At Startup (RARP)

6.1 Introduction

We now know that physical network addresses are both low-level and hardware
dependent, and we understand that each machine using TCP/IP is assigned one or more
32-bit IP addresses that are independent of the machine’s hardware addresses. Applica-
tion programs always use the IP address when specifying a destination. Because hosts
and routers must use a physical address to transmit a datagram across an underlying
hardware network; they rely on address resolution schemes like ARP to map between an
IP address and an equivalent hardware address.

Usually, a computer’s IP address is kept on its secondary storage, where the
operating system finds it at startup. The question arises, ‘‘How does a machine without
a permanently attached disk determine its IP address?”’ The problem is critical for
workstations that store files on a remote server or for small embedded systems because
such machines need an IP address before they can use standard TCP/IP file transfer pro-
tocols to obtain their initial boot image. This chapter explores the question of how to
obtain an IP address, and describes a low-level protocol that such machines can use be-
fore they boot from a remote file server. Chapter 23 extends the discussion of
bootstrapping, and considers popular alternatives to the protocol presented here.

Because an operating system image that has a specific IP address bound into the
code cannot be used on multiple computers, designers usually try to avoid compiling a
machine’s IP address in the operating system code or support software. In particular,
the bootstrap code often found in Read Only Memory (ROM) is usually built so the
same image can run on many machines. When such code starts execution, it uses the
network to contact a server and obtain the computer’s IP address.

89



90 Determining An Internet Address At Startup (RARP) Chap. 6

The bootstrap procedure sounds paradoxical: a machine communicates with a re-
mote server to obtain an address needed for communication. The paradox is only ima-
gined, however, because the machine does know how to communicate. It can use its
physical address to communicate over a single network. Thus, the machine must resort
to physical network addressing temporarily in the same way that operating systems use
physical memory addressing to set up page tables for virtual addressing. Once a
machine knows its IP address, it can communicate across an internet.

The idea behind finding an IP address is simple: a machine that needs to know its
address sends a request to a servert on another machine, and waits until the server
sends a response. We assume the server has access to a disk where it keeps a database
of internet addresses. In the request, the machine that needs to know its internet address
must uniquely identify itself, so the server can look up the correct internet address and
send a reply. Both the machine that issues the request and the server that responds use
physical network addresses during their brief communication. How does the requester
know the physical address of a server? Usually, it does not — it simply broadcasts the
request to all machines on the local network. One or more servers respond.

Whenever a machine broadcasts a request for an address, it must uniquely identify
itself. What information can be included in its request that will uniquely identify the
machine? Any unique hardware identification suffices (e.g., the CPU serial number).
However, the identification should be something that an executing program can obtain
easily. Unfortunately, the length or format of CPU-specific information may vary
among processor models, and we would like to devise a server that accepts requests
from all machines on the physical network using a single format. Furthermore, en-
gineers who design bootstrap code attempt to create a single software image that can
execute on an arbitrary processor, and each processor model may have a slightly dif-
ferent set of instructions for obtaining a serial number.

6.2 Reverse Address Resolution Protocol (RARP)

The designers of TCP/IP protocols realized that there is another piece of uniquely
identifying information readily available, namely, the machine’s physical network ad-
dress. Using the physical address as a unique identification has two advantages. Be-
cause a host obtains its physical addresses from the network interface hardware, such
addresses are always available and do not have to be bound into the bootstrap code.
Because the identifying information depends on the network and not on the CPU vendor
or model, all machines on a given network will supply uniform, unique identifiers.
Thus, the problem becomes the reverse of address resolution: given a physical network
address, devise a scheme that will allow a server to map it into an internet address.

The TCP/IP protocol that allows a computer to obtain its IP address from a server
is known as the Reverse Address Resolution Protocol (RARP). RARP is adapted from
the ARP protocol of the previous chapter and uses the same message format shown in
Figure 5.3. In practice, the RARP message sent to request an internet address is a little
more general than what we have outlined above: it allows a machine to request the IP

tChapter 21 discusses servers in detail.



Sec. 6.2 Reverse Address Resolution Protocol (RARP) 91

address of a third party as easily as its own. It also allows for multiple physical net-
work types. .

Like an ARP message, a RARP message is sent from one machine to another en-
capsulated in the data portion of a network frame. For example, an Ethernet frame car-
rying a RARP request has the usual preamble, Ethernet source and destination ad-
dresses, and packet type fields in front of the frame. The frame type contains the value
8035, to identify the contents of the frame as a RARP message. The data portion of
the frame contains the 28-octet RARP message. '

Figure 6.1 illustrates how a host uses RARP. The sender broadcasts a RARP re-
quest that specifies itself as both the sender and target machine, and supplies its physi-
cal network address in the target hardware address field. All computers on the network
receive the request, but only those authorized to supply the RARP service process the
request and send a reply; such computers are known informally as RARP servers. For
RARP to succeed, the network must contain at least one RARP server.

(a)

(b)

Figure 6.1 Example exchange using the RARP protocol. (a) Machine A
broadcasts a RARP request specifying itself as a target, and (b)
those machines authorized to supply the RARP service (C and D)
reply directly to A.

Servers answer requests by filling in the target protocol address field, changing the
message type from request to reply, and sending the reply back directly to the machine
making the request. The original machine receives replies from all RARP servers, even
though only the first is needed.



92 Determining An Internet Address At Startup (RARP) Chap. 6

Keep in mind that all communication between the computer seeking its IP address
and the server supplying it must be carried out using only the physical network. Furth-
ermore, the protocol allows a host to ask about an arbitrary target. Thus, the sender
supplies its hardware address separate from the target hardware address, and the server
is careful to send the reply to the sender’s hardware address. On an Ethernet, having a
field for the sender’s hardware address may seem redundant because the information is
also contained in the Ethernet frame header. However, not all Ethernet hardware pro-
vides the operating system with access to the physical frame header.

6.3 Timing RARP Transactions

Like any communication on a best-effort delivery network, RARP requests and
responses are susceptible to loss (including discard by the network interface if the CRC
indicates that the frame was corrupted). Because RARP uses the physical network
directly, no other protocol software will time the response or retransmit the request;
RARP software must handle these tasks. In general, RARP is used only on local area
networks like the Ethernet, where the probability of failure is low. If a network has
only one RARP server, however, that machine may not be able to handle the load, so
packets may be dropped.

Some computers that rely on RARP to boot, choose to retry indefinitely until they
receive a response. Other implementations announce failure after only a few tries to
avoid flooding the network with unnecessary broadcast traffic (e.g., in case the server is
unavailable). On an Ethernet, network failure is less likely than server overload. Mak-
ing RARP software retransmit quickly may have the unwanted effect of flooding a
congested server with more traffic. Using a large delay ensures that servers have ample
time to satisfy the request and return an answer.

6.4 Primary And Backup RARP Servers

The chief advantage of having several computers function as RARP servers is that
it makes the system more reliable. If one server is down or too heavily loaded to
respond, another answers the request. Thus, it is highly likely that the service will be
available. The chief disadvantage of using many servers is that when a machine broad-
casts a RARP request, the network becomes overloaded because all servers attempt to
respond. On an Ethernet, for example, using multiple RARP servers makes the proba-
bility of collision high.

How can the RARP service be arranged to keep it available and reliable without
incurring the cost of multiple, simultaneous replies? There are at least two possibilities,
and they both involve delaying responses. In the first solution, each machine that
makes RARP requests is assigned a primary server. Under normal circumstances, only
the machine’s primary server responds to its RARP request. All nonprimary servers re-
ceive the request but merely record its arrival time. If the primary server is unavailable,



Sec. 6.4 Primary And Backup RARP Servers 93

the original machine will timeout waiting for a response and then rebroadcast the re-
quest. Whenever a nonprimary server receives a second copy of a RARP request within
a short time of the first, it responds.

The second solution uses a similar scheme but attempts to avoid having all nonpri-
mary servers transmit responses simultaneously. Each nonprimary machine that re-
ceives a request computes a random delay and then sends a response. Under normal
circumstances, the primary server responds immediately and successive responses are
delayed, so there is low probability that several responses arrive at the same time.
When the primary server is unavailable, the requesting machine experiences a small de-
lay before receiving a reply. By choosing delays carefully, the designer can ensure that
requesting machines do not rebroadcast before they receive an answer.

6.5 Summary

At system startup, a computer that does not have permanent storage must contact a
server to find its IP address before it can communicate using TCP/IP. This chapter ex-
amined the RARP protocol that uses physical network addressing to obtain the
machine’s internet address. The RARP mechanism supplies the target machine’s physi-
cal hardware address to uniquely identify the processor and broadcasts the RARP re-
quest. Servers on the network receive the message, look up the mapping in a table
(presumably from secondary storage), and reply to the sender. Once a machine obtains
its IP address, it stores the address in memory and does not use RARP again until it re-
boots.

FOR FURTHER STUDY

The details of RARP are given in Finlayson, et. al. [RFC 903]. Finlayson [RFC
906] describes workstation bootstrapping using the TFTP protocol. Bradley and Brown
[RFC 1293] specifies a related protocol, Inverse ARP. Inverse ARP permits a computer
to query the machine at the opposite end of a hardware connection to determine its IP
address, and was intended for computers on a connection-oriented network such as
Frame Relay or ATM. Volume 2 of this text describes an example implementation of
RARP.

Chapter 23 considers alternatives to RARP known as BOOTP and DHCP. Unlike
the low-level address determination scheme RARP supplies, BOOTP and DHCP build
on higher level protocols like IP and UDP. Chapter 23 compares the two approaches,
discussing the strengths and weaknesses of each.



94 Determining An Internet Address At Startup (RARP) Chap. 6

EXERCISES

6.1 A RARP server can broadcast RARP replies to all machines or transmit each reply directly
to the machine that makes the request. Characterize a network technology in which broad-
casting replies to all machines is beneficial.

6.2 RARP is a narrowly focused protocol in the sense that replies only contain one piece of in-
formation (i.e., the requested IP address). When a computer boots, it usually needs to
know its name in addition to its Internet address. Extend RARP to supply the additional in-
formation.

6.3 How much larger will Ethernet frames become when information is added to RARP as
described in the previous exercise?

6.4 Adding a second RARP server to a network increases reliability. Does it ever make sense
to add a third? How about a fourth? Why or Why not?

6.5 The diskless workstations from one vendor use RARP to obtain their IP addresses, but al-
ways assume the response comes from the workstation’s file server. The diskless machine
then tries to obtain a boot image from that server. If it does not receive a response, the
workstation enters an infinite loop broadcasting boot requests. Explain how adding a back-
up RARP server to such a configuration can cause the network to become congested with
broadcasts. Hint: think of power failures.

6.6 Monitor a local network while you reboot various computers. Which use RARP?

6.7 The backup RARP servers discussed in the text use the arrival of a second request in a

short period of time to trigger a reply. Consider the RARP server scheme that has all
servers answer the first request, but avoids congestion by having each server delay a ran-
dom time before answering. Under what circumstances could such a design yield better
results than the design described in the text?



/

Internet Protocol:
Connectionless Datagram
Delivery

7.1 Introduction

Previous chapters review pieces of network hardware and software that make inter-
net communication possible, explaining the underlying network technologies and ad-
dress resolution. This chapter explains the fundamental principle of connectionless
delivery and discusses how it is provided by the Internet Protocol (IP), which is one of
the two major protocols used in internetworking (TCP being the other). We will study
the format of IP datagrams and see how they form the basis for all internet communica-
tion. The next two chapters continue our examination of the Internet Protocol by dis-
cussing datagram routing and error handling.

7.2 A Virtual Network

Chapter 3 discusses an internet architecture in which routers connect muitiple phy-
sical networks. Looking at the architecture may be misleading, because the focus
should be on the interface that an internet provides to users, not on the interconnection
technology.

95



96 Internet Protocol: Connectionless Datagram Delivery Chap. 7

A user thinks of an internet as a single virtual network that intercon-
nects all hosts, and through which communication is possible; its
underlying architecture is both hidden and irrelevant.

In a sense, an internet is an abstraction of physical networks because, at the lowest lev-
el, it provides the same functionality: accepting packets and delivering them. Higher
levels of internet software add most of the rich functionality users perceive.

7.3 Internet Architecture And Philosophy

Conceptually, a TCP/IP internet provides three sets of services as shown in Figure
7.1; their arrangement in the figure suggests dependencies among them. At the lowest
level, a connectionless delivery service provides a foundation on which everything rests.
At the next level, a reliable transport service provides a higher level platform on which
applications depend. We will soon explore each of these services, understand what they
provide, and see the protocols associated with them.

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Figure 7.1 The three conceptual layers of internet services.

7.4 The Conceptual Service Organization

Although we can associate protocol software with each of the services in Figure
7.1, the reason for identifying them as conceptual parts of the internet is that they clear-
ly point out the philosophical underpinnings of the design. The point is:

Internet software is designed around three conceptual networking ser-
vices arranged in a hierarchy; much of its success has resulted be-
cause this architecture is surprisingly robust and adaptable.



Sec. 7.4 The Conceptual Service Organization 97

One of the moct significant advantages of this conceptual separation is that it becomes
possible to replace one service without disturbing others. Thus, research and develop-
ment can proceed concurrently on all three.

7.5 Connectionless Delivery System

The most fundamental internet service consists of a packet delivery system.
Technically, the service is defined as an unreliable, best-effort, connectionless packet
delivery system. analogous to the service provided by network hardware that operates
on a best-effort delivery paradigm. The service is called unreliable because delivery is
not guaranteed. The packet may be lost, duplicated, delayed. or delivered out of order,
but the service will not detect such conditions, nor will it inform the sender or receiver.
The service is called connectionless because each packet is treated independently from
all others. A sequence of packets sent from one computer to another may travel over
different paths, or some may be lost while others are delivered. Finally, the service is
said to use best-effort delivery because the internet software makes an earnest attempt to
deliver packets. That is. the internet does not discard packets capriciously: unreliability
arises only when resources are exhausted or underlying networks fail.

7.6 Purpose Of The Internet Protocol

The protocol that defines the unreliable, connectionless delivery mechanism is
called the Internet Protocol and is usually referred to by its initials, /P+. IP provides
three important definitions. First, the IP protocol defines the basic unit of data transfer
used throughout a TCP/IP internet. Thus. it specifies the exact format of all data as it
passes across the internet. Second, IP software performs the routing function, choosing
a path over which data will be sent. Third. in addition to the precise, formal specifica-
tion of data formats and routing, IP includes a set of rules that embody the idea of un-
reliable packet delivery. The rules characterize how hosts and routers should process
packets, how and when error messages should be generated. and the conditions under
which packets can be discarded. IP is such a fundamental part of the design that a
TCP/IP internet is sometimes called an /P-based technology.

We begin our consideration of IP in this chapter by looking at the packet format it
specifies. We leave until later chapters the topics of routing and error handling.

7.7 The Internet Datagram

The analogy between a physical network and a TCP/IP internet is strong. On a
physical network, the unit of transfer is a frame that contains a header and data, where
the header gives information such as the (physical) source and destination addresses.
The internet calls its basic transfer unit an /nternet datagram, sometimes referred to as

“The abbreviation IP gives rise to the term 1P address.™



9% Internet Protocol: Connectionless Datagram Delivery Chap. 7

an IP datagram or merely a datagram. Like a typical physical network frame, a da-
tagram is divided into header and data areas. Also like a frame, the datagram header
contains the source and destination addresses and a type field that identifies the contents
of the datagram. The difference, of course, is that the datagram header contains IP ad-
dresses whereas the frame header contains physical addresses. Figure 7.2 shows the
general form of a datagram:

DATAGRAM HEADER DATAGRAM DATA AREA

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network
frame. IP specifies the header format including the source and
destination IP addresses. IP does not specify the format of the
data area; it can be used to transport arbitrary data.

7.7.1 Datagram Format

Now that we have described the general layout of an IP datagram, we can look at
the contents in more detail. Figure 7.3 shows the arrangement of fields in a datagram:

0 4 8 16 19 24 31
VERS | HLEN | SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS| FRAGMENT OFFSET
TIME TO LIVE | PROTOCOL HEADER CHECKSUM
SOURCE IP ADDRESS
DESTINATION IP ADDRESS
IP OPTIONS (IF ANY) PADDING
DATA

Figure 7.3 Format of an Internet datagram, the basic unit of transfer in a
TCP/IP internet.

Because datagram processing occurs in software, the contents and format are not
constrained by any hardware. For example, the first 4-bit field in a datagram (VERS)
contains the version of the IP protocol that was used to create the datagram. It is used
to verify that the sender, receiver, and any routers in between them agree on the format



Sec. 7.7 The Internet Datagram 99

of the datagram. All IP software is required to check the version field before processing
a datagram to ensure it matches the format the software expects. If standards change,
machines will reject datagrams with protocol versions that differ from theirs, preventing
them from misinterpreting datagram contert: according to an outdated format. The
current IP protocol version is 4. Consequently, the term /Pv4 is often used to denote
the current protocol.

The header length field (HLEN), also 4 bits, gives the datagram header length
measured in 32-bit words. As we will see, all fields in the header have fixed length ex-
cept for the /P OPTIONS and corresponding PADDING fields. The most common
header, which contains no options and no padding, measures 20 octets and has a header
length field equal to 5.

The TOTAL LENGTH field gives the length of the IP datagram measured in octets,
including octets in the header and data. The size of the data area can be computed by
subtracting the length of the header (HLEN) from the TOTAL LENGTH. Because the
TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is
216 or 65,535 octets. In most applications this is not a severe limitation. It may become
more important in the future if higher speed networks can carry data packets larger than
65,535 octets.

7.7.2 Datagram Type Of Service And Differentiated Services
Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field specifies

how the datagram should be handled. The field was originally divided into five sub-
fields as shown in Figure 7.4

0 1 2 3 4 5 6 7
PRECEDENCE D T R UNUSED

Figure 7.4 The original five subfields that comprise the 8-bit SERVICE TYPE
field.

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0
(normal precedence) through 7 (network control), allowing senders to indicate the im-
portance of each datagram. Although some routers ignore type of service, it is an im-
portant concept because it provides a mechanism that can allow control information to
have precedence over data. For example, many routers use a precedence value of 6 or 7
for routing traffic to make it possible for the routers to exchange routing information
even when networks are congested.

Bits D, T, and R specify.the type of transport desired for the datagram. When set,
the D bit requests low delay, the T bit requests high throughput, and the R bit requests
high reliability. Of course, it may not be possible for an internet to guarantee the type



10C Internet Protocol: Connectionless Datagram Delivery Chap. 7

of transport requested (i.e., it could be that no path to the destination has the requested
property). Thus, we think of the transport request as a hint to the routing algorithms,
not as a demand. If a router does know more than one possible route to a given desti-
nation, it can use the type of transport field to select one with characteristics closest to
those desired. For example, suppose a router can select between a low capacity leased
line or a high bandwidth (but high delay) satellite connection. Datagrams carrying
keystrokes from a user to a remote computer could have the D bit set requesting that
they be delivered as quickly as possible, while datagrams carrying a bulk file transter
could have the T bit set requesting that they travel across the high capacity satellite
path.

In the late 1990s, the IETF redefined the meaning of the 8-bit SERVICE TYPE
field to accommodate a set of differentiated services (DS). Figure 7.5 illustrates the
resulting definition.

0 1 2 3 4 5 6 7
CODEPOINT UNUSED

Figure 7.5 The differentiated services (DS) interpretation of the SERVICE
TYPE field in an 1P datagram.

Under the differentiated services interpretation, the first six bits comprise a
codepoint, which is sometimes abbreviated DSCP, and the last two bits are lett unused.
A codepoint value maps to an underlying service definition, typically through an array
of pointers. Although it is possible to define 64 separate services, the designers suggest
that a given router will only have a few services, and muitiple codepoints will map to
each service. Moreover, to maintain backward compatibility with the original defini-
tion, the standard distinguishes between the first three bits of the codepoint (the bits that
were formerly used for precedence) and the last three bits. When the last three bits con-
tain zero, the precedence bits define eight broad classes of service that adhere to the
same guidelines as the original definition: datagrams with a higher number in their pre-
cedence field are given preferential treatment over datagrams with a lower number.
That is, the eight ordered classes are defined by codepoint values of the form:

xxx000

where x denotes either a zero or a one.

The differentiated services design also accommodates another existing practice —
the widespread use of precedence 6 or 7 for routing traffic. The standard includes a
special case to handle these precedence values. A router is required to implement at
least two priority schemes: one for normal traffic and one for high-priority traffic.
When the last three bits of the CODEPOINT field are zero, the router must map a



Sec. 7.7 The Internet Datagram 101

codepoint with precedence 6 or 7 into the higher priority class and other codepoint
values into the lower priority class. Thus, if a datagram arrives that was sent using the
original TOS scheme. a router using the differentiated services scheme will honor pre-
cedence 6 and 7 as the datagram sender expects.

The 64 codepoint values are divided into three administrative groups as Figure 7.6
illustrates.

Pool Codepoint Assigned By
1 xxxxx0 Standards organization
2 xxxx11 Local or experimental
3 xxxx01 Local or experimental for now

Figure 7.6 The three administrative pools of codepoint values.

As the figure indicates. half of the values (i.e., the 32 values in pool 1) must be as-
signed interpretations by the IETF. Currently, all values in pools 2 and 3 are available
for experimental or local use. However, if the standards bodies exhaust all values in
pool 1, they may also choose to assign values in pool 3.

The division into pools may seem unusual because it relies on the low-order bits of
the value to distinguish pools. Thus, rather than a contiguous set of values, pool / con-
tains every other codepoint value (i.e., the even numbers between 2 and 64). The divi-
sion was chosen to keep the eight codepoints corresponding to values xxx000 in the
same pool.

Whether the original TOS interpretation or the revised differentiated services in-
terpretation is used, it is important to realize that routing software must choose from
among the underlying physical network technologies at hand and must adhere to local
policies. Thus, specifying a level of service in a datagram does not guarantee that
routers along the path will agree to honor the request. To summarize:

We regard the service type specification as a hint to the routing algo-
rithm that helps it choose among various paths to a destination based
on local policies and its knowledge of the hardware technologies
available on those paths. An internet does not guarantee 10 provide
any particular type of service.

7.7.3 Datagram Encapsulation

Before we can understand the next fields in a datagram, it is important to consider
how datagrams relate to physical network frames. We start with a question: ‘‘How
large can a datagram be?” Unlike physical network frames that must be recognized by
hardware, datagrams are handled by software. They can be of any length the protocol
designers choose. We have seen that the IPv4 datagram format allots 16 bits to the total
length field, limiting the datagram to at most 65,535 octets.



102 Internet Protocol: Connectionless Datagram Delivery Chap. 7

More fundamental limits on datagram size arise in practice. We know that as da-
tagrams move from one machine to another, they must always be transported by the
underlying physical network. To make internet transportation efficient, we would like
to guarantee that each datagram travels in a distinct physical frame. That is, we want
our abstraction of a physical network packet to map directly onto a real packet if possi-
ble.

The idea of carrying one datagram in one network frame is called encapsulation.
To the underlying network, a datagram is like any other message sent from one machine
to another. The hardware does not recognize the datagram format, nor does it under-
stand the IP destination address. Thus, as Figure 7.7 shows, when one machine sends
an IP datagram to another, the entire datagram travels in the data portion of the network
framet.

DATAGRAM

HEADER " DATAGRAM DATA AREA

FRAME

HEADER FRAME DATA AREA

Figure 7.7 The encapsulation of an IP datagram in a frame. The physical net-
work treats the entire datagram, including the header, as data.

7.7.4 Datagram Size, Network MTU, and Fragmentation

In the ideal case, the entire IP datagram fits into one physical frame, making
transmission across the physical net efficient. To achieve such efficiency, the designers
of IP might have selected a maximum datagram size such that a datagram would always
fit into one frame. But which frame size should be chosen? After all, a datagram may
travel across many types of physical networks as it moves across an internet to its final
destination.

To understand the problem, we need a fact about network hardware: each packet-
switching technology places a fixed upper bound on the amount of data that can be
transferred in one physical frame. For example, Ethernet limits transfers to 1500% oc-
tets of data, while FDDI permits approximately 4470 octets of data per frame. We refer
to these limits as the network’s maximum transfer unit or MTU. MTU sizes can be
quite small: some hardware technologies limit transfers to 128 octets or less. Limiting
datagrams to fit the smallest possible MTU in the internet makes transfers inefficient
when datagrams pass across a network that can carry larger size frames. However, al-
lowing datagrams to be larger than the minimum network MTU in an internet means
that a datagram may not always fit into a single network frame.

tA field in the frame header usually identifies the data being carried; Ethernet uses the type value 0800
to specify that the data area contains an encapsulated IP datagram.

+The limit of 1500 comes from the Ethernet specification; when used with a SNAP header the IEEE
802.3 standard limits data to 1492 octets. Some vendors’ implementations allow slightly larger transfers.



Sec. 7.7 The Internet Datagram 103

The choice should be obvious: the point of the internet design is to hide underlying
network technologies and make communication convenient for the user. Thus, instcad
of designing datagrams that adhere to the constraints of physical networks, TCP/IP
software chooses a convenient initial datagram size and arranges a way to divide large
datagrams into smaller pieces when the datagram needs to traverse a network that has a
small MTU. The small pieces into which a datagram is divided are called fragments,
and the process of dividing a datagram is known as fragmentation.

As Figure 7.8 illustrates, fragmentation usually occurs at a router somewhere along
the path between the datagram source and its ultimate destination. The router receives a
datagram from a network with a large MTU and must send it over a network for which
the MTU is smaller than the datagram size.

Host Host

Net 1 Net 3

MTU=1500 MTU=1500
R Net 2
I 1

MTU=620

Figure 7.8 An illustration of where fragmentation occurs. Router R, frag-
ments large datagrams sent from A to B R, fragments large da-
tagrams sent from B to A.

In the figure, both hosts attach directly to Ethernets which have an MTU ot 1500
octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The
path between them, however. includes a network with an MTU of 620. If host A sends
host B a datagram larger than 620 octets, router R, will fragment the datagram. Similar-
ly, if B sends a large datagram to A. router R, will fragment the datagram.

Fragment size is chosen so each fragment can be shipped across the underlying
network in a single frame. In addition, because IP represents the offset of the data in
multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of
course, choosing the multiple of eight octets nearest to the network MTU does not usu-
ally divide the datagram into equal size pieces: the last piece is often shorter than the
others. Fragments must be reassembled to produce a complete copy of the original da-
tagram before it can be processed at the destination.

The IP protocol does not limit datagrams to a small size, nor does it guarantee that
large datagrams will be delivered without fragmentation. The source can choose any
datagram size it thinks appropriate; fragmentation and reassembly occur automatically,
without the source taking special action. The IP specification states that routers must
accept datagrams up to the maximum of the MTUs of networks to which they attach.



104 Internet Protocol: Connectionless Datagram Delivery Chap. 7

In addition. a router must always handle datagrams of up to 576 octets. (Hosts are also
required to accept, and reassemble if necessary, datagrams of at least 576 octets.)

Fragmenting a datagram means dividing it into severai pieces. It may surprise you
to learn that each piece has the same format as the original datagram. Figure 7.9 illus-
trates the result of fragmentation.

DATAGRAM data, data, ~data,
HEADER 600 octets . 600 octets 1200 octets
(a)
FRAGMENT 1
HEADER data, Fragment 1 (offset 0)
FRAGMENT 2
HEADER data, Fragment 2 (offset 600)
FRAGMENT 3
HEADER data, Fragment 3 (offset 1200)
(b)

Figure 7.9 (a) An original datagram carrying 1400 octets of data and (b) the
three fragments for network MTU of 620. Headers 1 and 2 have
the more fragments bit set. Offsets shown are decimal octets;
they must be divided by 8 to get the value stored in the fragment
headers.

Each fragment contains a datagram header that duplicates most of the original da-
tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol-
lowed by as much data as can be carried in the fragment while keeping the total length
smaller than the MTU of the network over which it must travel.

7.7.5 Reassembly Of Fragments

Should a datagram be reassembled after passing across one network, or should the
fragments be carried to the final host before reassembly? In a TCP/IP internet, once a
datagram has been fragmented, the fragments travel as separate datagrams all the way to
the ultimate destination where they must be reassembled. Preserving fragments all the
way to the ultimate destination has two disadvantages. First, because datagrams are not
reassembled immediately after passing across a network with small MTU, the small
fragments must be carried from the point of fragmentation to the ultimate destination.



Sec. 7.7 The Internet Datagram 105

Reassembling datagrams at the ultimate destination can lead to inefficiency: even if
some of the physical networks encountered after the point of fragmentation have large
MTU capability. only small fragments traverse them. Second. if any fragments are lost,
the datagram cannot he reassembled. The receiving machine starts a reassembly timer
when it receives an initial fragment. [f the timer expires betfore all fragments arrive, the
receiving machine discards the surviving pieces without processing the datagram. Thus.
the probability of datagram loss increases when fragmentation occurs because the loss
of a single fragment results in loss of the entire datagram.

Despite the minor disadvantages. performing reassembly at the ultimate destination
works well. It allows each fragment to be routed independently. and does not require
intermediate routers to store or reassemble fragments.

7.7.6 Fragmentation Control

Three fields in the datagram header, IDENTIFICATION. FLAGS, and FRAGMENT
OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION
contains a unique integer that identifies the datagram. Recall that when a router frag-
ments a datagram, it copies most of the fields in the datagram header into each frag-
ment. Thus, the IDENTIFICATION field must be copied. Its primary purpose is to al-
low the destination to know which arriving fragments belong to which datagrams. As a
fragment arrives. the destination uses the /DENTIFICATION field along with the da-
tagram source address to identify the datagram. Computers sending IP datagrams must
generate a unique value for the IDENTIFICATION field for each datagramt. One tech-
nique used by IP software keeps a global counter in memory. increments it each time a
new datagram is created, and assigns the result as the datagram's IDENTIFICATION
field.

Recall that each fragment has exactly the same format as a complete datagram.
For a fragment, field FRAGMENT OF FSET specifies the offset in the original datagram
of the data being carried in the fragment. measured in units of 8 octetsi, starting at
offset zero. To reassemble the datagram, the destination must obtain all fragments start-
ing with the fragment that has offset 0 through the fragment with highest offset. Frag-
ments do not necessarily arrive in order. and there is no communication between the
router that fragmented the datagram and the destination trying to reassemble it.

The low-order two bits of the 3-bit FLAGS field control fragmentation. Usually,
application software using TCP/IP does not care about fragmentation because both frag-
mentation and reassembly are automatic procedures that occur at a low level in the
operating system. invisible to end users. However, to test internet software or debug
operational problems, it may be important to test sizes of datagrams for which fragmen-
tation occurs. The first control bit aids in such testing by specifying whether the da-
tagram may be fragmented. It is called the do nor fragment bit because setting it to ]
specifies that the datagram should not be fragmented. An application may choose to
disallow fragmentation when only the entire datagram is useful. For example, consider
a bootstrap sequence in which a small embedded system executes a program in ROM
that sends a request over the internet to which another machine responds by sending

7In theory. retransmissions of a packet can carry the same IDENTIFICATION field as the original; in
practice, higher-level protocols perform retransmission, resulting in a new datagram with its own IDENTIFI-
CATION.

£To save space in the header, offsets are specified in multiples of 8 octets.



106 Internet Protocol: Connectionless Datagram Delivery Chap. 7

back a memory image. If the embedded system has been designed so it needs the entire
image or none of it, the datagram should have the do not fragment bit set. Whenever a
router needs to fragment a datagram that has the do not fragment bit set, the router dis-
cards the datagram and sends an error message back to the source.

The low order bit in the FLAGS field specifies whether the fragment contains data
from the middle of the original datagram or from the end. It is called the more frag-
ments bit. To see why such a bit is needed, consider the IP software at the ultimate
destination attempting to reassemble a datagram. It will receive fragments (possibly out
of order) and needs to know when it has received all fragments for a datagram. When a
fragment arrives, the TOTAL LENGTH field in the header refers to the size of the trag-
ment and not to the size of the original datagram, so the destination cannot use the TO-
TAL LENGTH field to tell whether it has collected all fragments. The more fragments
bit solves the problem easily: once the destination receives a fragment with the smore
fragments bit turned off, it knows this fragment carries data from the tail of the original
datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields. it can compute
the length of the original datagram. By examining the FRAGMENT OFFSET and TO-
TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag-
ments on hand contain all pieces nceded to reassemble the original datagram.

7.7.7 Time to Live (TTL)

In principle, field TIME TO LIVE specifies how long, in seconds. the datagram is
allowed to remain in the internet system. The idea is both simple and important: when-
ever a computer injects a datagram into the internet. it sets a maximum time that the da-
tagram should survive. Routers and hosts that process datagrams must decrement the
TIME TO LIVE field as time passes and remove the datagram from the internet when its
time expires.

Estimating exact times is difficult because routers do not usually know the transit
time for physical networks. A few rules simplify processing and make it easy to handle
datagrams without synchronized clocks. First, each router along the path from source to
destination is required to decrement the TIME TO LIVE field by / when it processes the
datagram header. Furthermore, to handle cases of overloaded routers that introduce
long delays, each router records the local time when the datagram arrives, and decre-
ments the TIME TO LIVE by the number of seconds the datagram remained inside the
router waiting for servicet.

Whenever a TIME TO LIVE field reaches zero, the router discards the datagram
and sends an error message back to the source. The idea of keeping a timer for da-
tagrams is interesting because it guarantees that datagrams cannot travel around an in-
ternet forever, even if routing tables become corrupt and routers route datagrams in a
circle.

Although once important, the notion of a router delaying a datagram for many
seconds is now outdated — current routers and networks are designed to forward each
datagram within a reasonable time. If the delay becomes excessive, the router simply
discards the datagram. Thus, in practice, the TIME TO LIVE acts as a “‘hop limit”’
rather than an estimate of delay. Each router only decrements the value by 1.

+In practice, modern routers do not hold datagrams for multiple seconds.



Sec. 7.7 The Internet Datagram 107
7.7.8 Other Datagram Header Fields

Field PROTOCOL is analogous to the type field in a network frame; the value
specifies which high-level protocol was used to create the message carried in the DATA
area of the datagram. In essence, the value of PROTOCOL specifies the format of the
DATA area. The mapping between a high level protocol and the integer value used in
the PROTOCOL field must be administered by a central authority tu guarantee agree-
ment across the entire Internet.

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum
is formed by treating the header as a sequence of 16-bit integers (in network byte ord-
er), adding them together using one’s complement arithmetic, and then taking the one’s
complement of the result. For purposes of computing the checksum, field HEADER
CHECKSUM is assumed to contain zero.

It is important to note that the checksum only applies to values in the IP header
and not to the data. Separating the checksum for headers and data has advantages and
disadvantages. Because the header usually occupies fewer octets than the data, having a
separate checksum reduces processing time at routers which only need to compute
header checksums. The separation also allows higher level protocols to choose their
own checksum scheme for the data. The chief disadvantage is that higher level proto-
cols are forced to add their own checksum or risk having corrupted data go undetected.

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit
IP addresses of the datagram’s sender and intended recipient. Although the datagram
may be routed through many intermediate routers, the source and destination fields nev-
er change; they specify the IP addresses of the original source and ultimate destinationt.

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the
datagram. Its length depends, of course, on what is being sent in the datagram. The /P
OPTIONS field, discussed below, is variable length. The field labeled PADDING.
depends on the options selected. It represents bits containing zero that may be needed
to ensure the datagram header extends to an exact multiple of 32 bits (recall that the
header length field is specified in units of 32-bit words).

7.8 Internet Datagram Options

The IP OPTIONS field following the destination address is not required in every
datagram; options are included primarily for network testing or debugging. Options
processing is an integral part of the IP protocol, however, so all standard implementa-
tions must include it.

The length of the /P OPTIONS field varies depending on which options are select-
ed. Some options are one octet long; they consist of a single octet option code. Other
options are variable length. When options are present in a datagram, they appear con-
tiguously, with no special separators between them. Each option consists of a single oc-
tet option code, which may be followed by a single octet length and a set of data octets
for that option. The option code octet is divided into three fields as Figure 7.10 shows.

+An exception is made when the datagram includes the source route options listed below.



108 Internet Protocol: Connectionless Datagram Delivery Chap. 7

0 1 2 3 4 5 6 7
COPY | OPTION CLASS OPTION NUMBER

Figure 7.10 The division of the option code octet into three fields of fength 1.
2. and 5 bits.

The fields of the OPTION CODE consist of a 1-bit COPY flag. a 2-bit OPTION CLASS,
and the 5-bit OPTION NUMBER. The COPY flag controls how routers trcat options
during fragmentation. When the COPY bit is set to /. it specifies that the option should
be copied into all fragments. When set to 0. the COPY bit means that the option should
only be copied into the first fragment and not into all fragments.

The OPTION CLASS and OPTION NUMBER bits specify the general class of the
option and a specific option in that class. The table in Figure 7.11 shows how option
classes are assigned.

Option Class Meaning
0 Datagram or network control
1 Reserved for future use
2 Debugging and measurement
3 Reserved for future use

Figure 7.11 Classes of IP options as encoded in the OPTION CLASS bits of
an option code octet.

The table in Figure 7.12 lists examples of options that can accompany an [P da-
tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list
shows, most options are used for control purposes.



See. 7.8 Internet Datagram Options 109

Option  Optlion
Class Number Length Description
0 0 - End of option list. Used if options do
not end at end of header (see header
padding field for explanation).

0 1 - No operation. Used to align octets in a
list of options.

0 2 11 Security and handling restrictions
(for military applications).

0 3 var Loose source route. Used to request
routing that includes the specified routers.

0 7 var Record route. Used to trace a route.

0 8 4 Stream identifier. Used to carry a
SATNET stream identifier (obsolete).

0 9 var Strict source route. Used to specify
a exact path through the internet.

0 11 4 MTU Probe. Used for path MTU discovery.

0 12 4 MTU Reply. Used for path MTU discovery.

0 20 4 Router Alert. Router should examine this
datagram even if not an addressee.

2 4 var Internet timestamp. Used to record
timestamps along the route.

2 18 var Traceroute. Used by traceroute program

to find routers along a path.

Figure 7.12 Examples of IP options with their numeric class and number
codes. The value var in the length column stands for variable.

7.8.1 Record Route Option

The routing and timestamp options are the most interesting because they provide a
way 10 monitor or control how internet routers route datagrams. The record route op-
tion allows the source to create an empty list of IP addresses and arrange for each router
that handles the datagram to add its [P address to the list. Figure 7.13 shows the format
of the record route option.

As described above. the CODE field contains the option class and option number
(0 and 7 for record route). The LENGTH ftield specifies the total length of the option as
it appears in the 1P datagram, including the first three octets. The fields starting with
the one labeled FIRST IP ADDRESS comprise the arca reserved for recording internet
addresses. The POINTER field specifies the offset within the option of the next avail-
able slot.



110 Internet Protocol: Connectionless Datagram Delivery Chap. 7

0 8 16 24 31
CODE(7) LENGTH POINTER
FIRST IP ADDRESS
SECOND IP ADDRESS

Figure 7.13 The format of the record route option in an IP datagram. The
option begins with three octets immediately followed by a list of
addresses. Although the diagram shows addresses in 32 bit un-
its, they are not aligned on any octet boundary in a datagram.

Whenever a machine handles a datagram that has the record route option set, the
machine adds its address to the record route list (enough space must be allocated in the
option by the original source to hold all entries that will be needed). To add itself to
the list, a machine first compares the pointer and length fields. If the pointer is greater
than the length, the list is full, so the machine forwards the datagram without inserting
its entry. If the list is not full, the machine inserts its 4-octet IP address at the position
specified by the POINTER, and increments the POINTER by four.

When the datagram arrives, the destination machine can extract and process the list
of IP addresses. Usually, a computer that receives a datagram ignores the recorded
route. Using the record route option requires two machines that agree to cooperate; a
computer will not automatically receive recorded routes in incoming datagrams after it
turns on the record route option in outgoing datagrams. The source must agree to en-
able the record route option and the destination must agree to process the resultant list.

7.8.2 Source Route Options

Another idea that network builders find interesting is the source route option. The
idea behind source routing is that it provides a way for the sender to dictate a path
through the internet. For example, to test the throughput over a particular physical net-
work, N, system administrators can use source routing to force IP datagrams to traverse
network N even if routers would normally choose a path that did not include it. The
ability to make such tests is especially important in a production environment, because
it gives the network manager freedom to route users’ datagrams over networks that are
known to operate correctly while simultaneously testing other networks. Of course,
source routing is only useful to people who understand the network topology; the aver-
age user has no need to know or use it.



Sec. 7.8 Internet Datagram Options 11

IP supports two forms of source routing. One form, called strict source routing,
specifies a routing path by including a sequence of IP addresses in the option as Figure
7.14 shows.

0 8 16 24 31
CODE(137) | LENGTH POINTER

IP ADDRESS OF FIRST HOP
IP ADDRESS OF SECOND HOP

Figure 7.14 The strict source route option specifies an exact route by giving a
list of IP addresses the datagram must follow.

Strict source routing means that the addresses specify the exact path the datagram must
follow to reach its destination. The path between two successive addresses in the list
must consist of a single physical network: an error results if a router cannot follow a
strict source route. The other form, called loose source routing, also includes a se-
quence of IP addresses. It specifies that the datagram must follow the sequence of IP
addresses, but allows multiple network hops between successive addresses on the list.

Both source route options require routers along the path to overwrite items in the
address list with their local network addresses. Thus, when the datagram arrives at its
destination, it contains a list of all addresses visited. exactly like the list produced by
the record route option.

The format of a source route option resembles that of the record route option
shown above. Each router examines the POINTER and LENGTH fields to see if the list
has been exhausted. If it has, the pointer is greater than the length, and the router routes
the datagram to its destination as usual. If the list is not exhausted, the router follows
the pointer, picks up the IP address, replaces it with the router’s address*, and routes
the datagram using the address obtained from the list.

7.8.3 Timestamp Option

The timestamp option works like the record route option in that the timestamp op-
tion contains an initially empty list, and each router along the path from source to desti-
nation fills in one item in the list. Each entry in the list contains two 32-bit items: the
IP address of the router that supplied the entry and a 32-bit integer timestamp. Figure
7.15 shows the format of the timestamp option.

+A router has one address for each interface: it records the address that corresponds to the network over
which it routes the datagram.



112 Iniernet Protocol: Connectionless Datagram Delivery Chap. 7

0 8 16 24 31
CODE(68) | LENGTH POINTER  |OFLOW|FLAGS
FIRST IP ADDRESS
FIRST TIMESTAMP

Figure 7.15 The format of the timestamp option. Bits in the FLAGS field
control the exact tormat and rules routers use to process this op-
tion.

In the figure, the LENGTH and POINTER fields are used to specity the length of
the space reserved for the option and the location of the next unused slot (exactly as in
the record route option). The 4-bit OFLOW field contains an integer count of routers
that could not supply a umestamp because the option was too small.

The value in the 4-bit FLAGS field controls the exact format of the option and tells
how routers should supply timestamps. The values are:

Flags value Meaning
0 Record timestamps only; omit IP addresses.
1 Precede each timestamp by an IP address
(this is the format shown in Figure 7.15).
3 IP addresses are specified by sender; a

router only records a timestamp if the
next IP address in the list matches the
router’s IP address.

Figure 7.16 The interpretation of values in the FLAGS field of a timestamp
option.

Timestamps give the time and date at which a router handles the datagram, ex-
pressed as milliseconds since midnight, Universal Time#. If the standard representation
for time is unavailable, the router can use any representation of local time provided it
turns on the high-order bit in the timestamp field. Of course, timestamps issued by in-
dependent computers are not always consistent even if represented in universal time;
each machine reports time according to its local clock. and clocks may differ. Thus,
timestamp entries should always be treated as estimates, independent of the representa-
ton.

It may seem odd that the timestamp option includes a mechanism to have routers
record their IP addresses along with timestamps because the record route option already
provides that capability. However, recording 1P addresses with timestamps eliminates

= Universal Time was formerty called Greenwich Mean Time: it is the time of day at the prime meridian.




Sec. 7.8 Internet Datagram Options 113

ambiguity. Having an address recorded along with each timestamp is also useful be-
cause it allows the receiver to know exactly which path the datagram followed.

7.8.4 Processing Options During Fragmentation

The idea behind the COPY bit in the option CODE field should now be clear.
When fragmenting a datagram, a router replicates some IP options in all fragments
while it places others in only one fragment. For example, consider the option used to
record the datagram route. We said that each fragment will be handled as an indepen-
dent datagram, so there is no guarantee that all fragments follow the same path to the
destination. If all fragments contained the record route option, the destination might re-
ceive a different list of routes from each fragment. It could not produce a single, mean-
ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies
that the record route option should only be copied into one of the fragments.

Not all IP options can be restricted to one fragment. Consider the source route op-
tion, for example, that specifies how a datagram should travel through the internet.
Source routing information must be replicated in all fragment headers, or fragments will
not follow the specified route. Thus, the code field for source route specifies that the
option must be copied into all fragments.

7.9 Summary

The fundamental service provided by TCP/IP internet software is a connectionless.
unreliable, best-effort packet delivery system. The Internet Protocol (IP) formally spect-
fies the format of internet packets, called datagrams, and informally embodies the ideas
of connectionless delivery. This chapter concentrated on datagram formats: later
chapters will discuss IP routing and error handling.

Analogous to a physical frame, the IP datagram is divided 1nto header and data
areas. Among other information, the datagram header contains the source and destina-
tion IP addresses, fragmentation control, precedence, and a checksum used to catch
transmission errors. Besides fixed-length fields, each datagram header can contain an
options tield. 'The options field is variable length, depending on the number and type of
options used as well as the size of the data area allocated for each option. Intended to
help monitor and control an internet, options allow one to specify or record routing in-
formation, or to gather timestamps as the datagram traverses an internet.

FOR FURTHER STUDY

Postel [1980] discusses possible ways to approach internet protocols, addressing.
and routing. In later publications. Postel [RFC 791] gives the standard for the Internet
Protocol. Braden [RFC 1122] further refines the standard. Hornig [RFC 894 specifies



114 Internet Protocol: Connectionless Datagram Delivery Chap. 7

the standard for the transmission of IP datagrams across an Ethernet. Clark [RFC 815]
describes efficient reassembly of fragments; Kent and Mogul [1987] discusses the
disadvantages of fragmentation.

Nichols et. al. [RFC 2474] specifies the differentiated service interpretation of the
service type bits in datagram headers, and Blake et. al. [RFC 2475] discusses an archi-
tecture for differentiated services. In addition to the packet format, many constants
needed in the network protocols are also standardized; the values can be found in the
Official Internet Protocols RFC, which is issued periodically.

An alternative internet protocol suite known as XNS, is given in Xerox [1981].
Boggs et. al. [1980] describes the PARC Universal Packet (PUP) protocol, an abstrac-
tion from XNS closely related to the IP datagram.

EXERCISES

7.1 What is the single greatest advantage of having the IP checksum cover only the datagram
header and not the data? What is the disadvantage?

7.2 Is it ever necessary to use an IP checksum when sending packets over an Ethernet? Why
or why not?

7.3 What is the MTU size for a Frame Relay network? Hyperchannel? an ATM network?

7.4 Do you expect a high-speed local area network to have larger or smaller MTU size than a
wide area network?

7.5 Argue that fragments should have small, nonstandard headers.

7.6  Find out when the IP protocol version last changed. Is having a protocol version number
useful?

7.7  Extend the previous exercise by arguing that if the IP version changes, it makes more sense
to assign a new frame type than to encode the version number in the datagram,

7.8 Can you imagine why a one’s complement checksum was chosen for IP instead of a cyclic
redundancy check?

7.9  What are the advantages of doing reassembly at the ultimate destination instead of doing it
after the datagram travels across one network?

7.10 What is the minimum network MTU required to send an IP datagram that contains at least
one octet of data?

7.11 Suppose you are hired to implement IP datagram processing in hardware. Is there any rear-
rangement of fields in the header that would have made your hardware more efficient?
Easier to build?

7.12 If you have access to an implementation of IP, revise it and test your locally available im-
plementations of IP to see if they reject IP datagrams with an out-of-date version number.

7.13 When a minimum-size 1P datagram travels across an Ethernet, how large is the frame?

7.14 The differentiated services interpretation of the SERVICE TYPE field allows up to 64
separate service levels. Argue that fewer levels are needed (i.e., make a list of all possible
services that a user might access).

7.15 The differentiated service definition was chosen to make it backward compatible with the
original type-of-service priority bits. Will the backward compatibility force implementa-
tions to be less efficient than an alternative scheme? Explain.



8

Internet Protocol: Routing IP
Datagrams

8.1 Introduction

We have seen that all internet services use an underlying, connectionless packet
delivery system, and that the basic unit of transfer in a TCP/IP internet is the IP da-
tagram. This chapter adds to the description of connectionless service by describing
how routers forward IP datagrams and deliver them to their final destinations. We think
of the datagram format from Chapter 7 as characterizing the static aspects of the Inter-
net Protocol. The description of routing in this chapter characterizes the operational as-
pects. The next chapter completes our basic presentation of IP by describing how errors
are handled. Chapter 10 then describes extensions for classless and subnet addressing,
and later chapters show how other protocols use IP to provide higher-level services.

8.2 Routing In An Internet

In a packet switching system, routing refers to the process of choosing a path over
which to send packets, and router refers to a computer making the choice. Routing oc-
curs at several levels. For example, within a wide area network that has multiple physi-
cal connections between packet switches, the network itself is responsible for routing
packets from the time they enter until they leave. Such internal routing is completely
self-contained inside the wide area network. Machines on the outside cannot participate
in decisions; they merely view the network as an entity that delivers packets.

115



116 Internet Protocol: Routing IP Datugrams Chap. 8

Remember that the goal of IP is to provide a virtual network that encompasses
multiple physical networks and offers a connectionless datagram delivery service.
Thus, we will focus on IP forwarding. which is also called interner routing or 1P rout-
ing¥. The information used to make routing decisions is known as /P routing informa-
tion. Like routing within a single physical network, 1P routing chooses a path over
which a datagram should be sent. Unlike routing within a single network, the IP rout-
ing algorithm must choose how to send a datagram across multiple physical networks.

Routing in an internet can be difficult, especially among computers that have mul-
tiple physical network connections. Ideally, the routing software would examine net-
work load, datagram length, or the type of service specified in the datagram header
when selecting the best path. Most internet routing software is much less sophisticated,
however, and selects routes based on fixed assumptions about shortest paths.

To understand IP routing completely, we must review the architecture of a TCP/IP
internet. First, recall that an internet is composed of multiple physical networks inter-
connected by computers called rourers. Each router has direct connections to two or
more networks. By contrast, a host computer usually connects directly to one physical
network. We know that it is possible, however, to have a multi-homed host connected
directly to multiple networks.

Both hosts and routers participate in routing an IP datagram to its destination.
When an application program on a host attempts to communicate, the TCP/IP protocols
eventually generate one or more IP datagrams. The host must make an initial routing
decision when it chooses where to send the datagrams. As Figure # ! shows, hosts
must make routing decisions even if they have only one network coun. tion.

path to some path to other
T destinations destinations T

R, R,

HOST

Figure 8.1 An example of a singly-homed host that must route datagrams.
The host must choose to send a datagram either to router R, orto
router R,, because each router provides the best path to some des-
tinations.

The primary purpose of routers is to make IP routing decisions. What about
multi-homed hosts? Any computer with multiple network connections can act as a
router, and as we will see, multi-homed hosts running TCP/IP have all the software

TChapter 18 describes a related topic known as layer 3 switching or 1P switching.



Sec. 8.2 Routing In An Internet 117

needed for routing. Furthermore, sites that cannot afford separate routers sometimes use
general-purpose timesharing machines as both hosts and routers. However, the TCP/IP
standards draw a sharp distinction between the functions of a host and those of a router,
and sites that try to mix host and router functions on a single machine sometimes find
that their multi-homed hosts engage in unexpected interactions. For now, we will dis-
tinguish hosts from routers, and assume that hosts do not perform the router’s function
of transferring packets from one network to another.

8.3 Direct And Indirect Delivery

Loosely speaking, we can divide routing into two forms: direct delivery and in-
direct delivery. Direct delivery, the transmission of a datagram from one machine
across a single physical network directly to another, is the basis on which all internet
communication rests. Two machines can engage in direct delivery only if they both at-
tach directly to the same underlying physical transmission system (e.g., a single Ether-
net). Indirect delivery occurs when the destination is not on a directly attached net-
work, forcing the sender to pass the datagram to a router for delivery.

8.3.1 Datagram Delivery Over A Single Network

We know that one machine on a given physical network can send a physical frame
directly to another machine on the same network. To transfer an IP datagram. the
sender encapsulates the datagram in a physical frame, maps the destination IP address
into a physical address, and uses the network hardware to deliver it. Chapter 5 present-
ed two possible mechanisms for address resolution. including using the ARP protocol
for dynamic address binding on Ethernet-like networks. Chapter 7 discussed datagram
encapsulation. Thus, we have reviewed all the pieces needed to understand direct
delivery. To summarize:

Transmission of an IP datagram between two machines on a single
physical network does not involve routers. The sender encapsulates
the datagram in a physical frame, binds the destination 1P address to
a physical hardware address, and sends the resulting frame directly to
the destination.

How does the sender know whether the destination lies on a directly connected net-
work? The test is straightforward. We know that IP addresses are divided into a
network-specific prefix and a host-specific suffix. To see if a destination lies on one of
the directly connected networks, the sender extracts the network portion of the destina-
tion IP address and compares it to the network portion of its own IP address(es). A
match means the datagram can be sent directly. Here we see one of the advantages of
the Internet address scheme, namely:



118 Internet Protocol: Routing IP Datagrams Chap. 8

Because the internet addresses of all machines on a single network in-
clude a common network prefix and extracting that prefix requires
only a few machine instructions, testing whether a machine can be
reached directly is extremely efficient.

From an internet perspective, it is easiest to think of direct delivery as the final
step in any datagram transmission, even if the datagram traverses many networks and
intermediate routers. The final router along the path between the datagram source and
its destination will connect directly to the same physical network as the destination.
Thus, the final router will deliver the datagram using direct delivery. We can think of
direct delivery between the source and destination as a special case of general purpose
routing — in a direct route the datagram does not happen to pass through any intervening
routers.

8.3.2 Indirect Delivery

Indirect delivery is more difficult than direct delivery because the sender must
identify a router to which the datagram can be sent. The router must then forward the
datagram on toward its destination network.

To visualize how indirect routing works, imagine a large internet with many net-
works interconnected by routers but with only two hosts at the far ends. When one host
wants to send to the other, it encapsulates the datagram and sends it to the nearest
router. We know that the host can reach a router because all physical networks are in-
terconnected, so there must be a router attached to each network. Thus, the originating
host can reach a router using a single physical network. Once the frame reaches the
router, software extracts the encapsulated datagram, and the IP software selects the next
router along the path towards the destination. The datagram is again placed in a frame
and sent over the next physical network to a second router, and so on, until it can be
delivered directly. These ideas can be summarized:

Routers in a TCP/IP internet form a cooperative, interconnected
structure. Datagrams pass from router to router until they reach a
router that can deliver the datagram directly.

How can a router know where to send each datagram? How can a host know
which router to use for a given destination? The two questions are related because they
both involve IP routing. We will answer them in two stages, considering the basic
table-driven routing algorithm in this chapter and postponing a discussion of how
routers learn new routes until later.



Sec. 8.4 Table-Driven IP Routing 119
8.4 Table-Driven IP Routing

The usual IP routing algorithm employs an [nternet routing table (sometimes
called an IP routing table) on each machine that stores information about possible desti-
nations and how to reach them. Because both hosts and routers route datagrams, both
have IP routing tables. Whenever the IP routing software in a host or router needs to
transmit a datagram, it consults the routing table to decide where to send the datagram.

What information should be kept in routing tables? If every routing table con-
tained information about every possible destination address, it would be impossible to
keep the tables current. Furthermore, because the number of possible destinations is
large, machines would have insufficient space to store the information.

Conceptually, we would like to use the principle of information hiding and allow
machines to make routing decisions with minimal information. For example, we would
like to isolate information about specific hosts to the local environment in which they
exist and arrange for machines that are far away to route packets to them without know-
ing such details. Fortunately, the IP address scheme helps achieve this goal. Recall
that IP addresses are assigned to make all machines connected to a given physical net-
work share a common prefix (the network portion of the address). We have already
seen that such an assignment makes the test for direct delivery efficient. It also means
that routing tables only need to contain network prefixes and not full IP addresses.

8.5 Next-Hop Routing

Using the network portion of a destination address instead of the complete host ad-
dress makes routing efficient and keeps routing tables small. More important, it helps
hide information, keeping the details of specific hosts confined to the local environment
in which those hosts operate. Typically, a routing table contains pairs (N, R), where N
is the IP address of a destination nenvork, and R is the IP address of the “‘next’’ router
along the path to network N. Router R is called the next hop, and the idea of using a
routing table to store a next hop for each destination is called next-hop routing. Thus,
the routing table in a router R only specifies one step along the path from R to a desti-
nation network — the router does not know the complete path to a destination.

It is important to understand that each entry in a routing table points to a router
that can be reached across a single network. That is, all routers listed in machine M’s
routing table must lie on networks to which M connects directly. When a datagram is
ready to leave M, IP software locates the destination [P address and extracts the network
portion. M then uses the network portion to make a routing decision, selecting a router
that can be reached directly.

In practice, we apply the principle of information hiding to hosts as well. We in-
sist that although hosts have IP routing tables, they must keep minimal information in
their tables. The idea is to force hosts to rely on routers for most routing.

Figure 8.2 shows a concrete example that helps explain routing tables. The exam-
ple internet consists of four networks connected by three routers. In the figure, the rout-



120 Internet Protocol: Routing IP Datagrams Chap. 8

ing table gives the routes that router R uses. Because R connects directly to networks
20.0.0.0 and 30.0.0.0, it can use direct delivery to send to a host on either of those net-
works (possibly using ARP to find physical addresses). Given a datagram destined for
a host on network 40.0.0.0, R routes it to the address of router S, 30.0.0.7. S will then
deliver the datagram directly. R can reach address 30.0.0.7 because both R and S attach
directly to network 30.0.0.0.

Network

10.0.0.0

(a)
7O REACH HOSTS ROUTE TO
01 NETWORK THIS ADDRESS
20.0.0.0 DELIVER DIRECTLY
: 30.0.0.0 DELIVER DIRECTLY
: 10.0.0.0 20.0.0.5
40.6.0.0 30.0.0.7
(b)

Figure 8.2 (a) An example internet with 4 networks and 3 routers, and (b) the
routing table in R.

As Figure 8.2 demonstrates, the size of the routing table depends on the number of
networks 1n the internet; it only grows when new networks are added. However, the
table size and contents are independent of the number of individual hosts connected to
the networks. We can summarize the underlying principle:

To hide information, keep routing tables small, and make routing de-
cisions efficient, IP routing software only keeps information about
destination network addresses, not about individual host addresses.



Sec. 8.5 Next-Hop Routing 121

Choosing routes based on the destination network ID alone has several conse-
quences. First. in most implementations, it means that all traffic destined for a given
network takes the same path. As a result. even when multiple paths exist. they may not
be used concurrently. Also, all types of traffic follow the same path without regard to
the delay or throughput of physical networks. Second. because only the final router
along the path attempts to communicate with the destination host, only it can determine
if the host exists or is operational. Thus, we need to arrange a way for that router to
send reports of delivery problems back to the original source. Third, because each
router forwards traffic independently, datagrams traveling from host A to host B may
follow an entirely different path than datagrams traveling from host B back to host A.
We need to ensure that routers cooperate to guarantee that two-way communication is
always possible.

8.6 Default Routes

Another technique used to hide information and keep routing table sizes small con-
solidates muitiple entries into a default case. The idea is to have the IP routing software
first look in the routing table for the destination network. If no route appears in the
table, the routing routines send the datagram to a default router.

Default routing is especially useful when a site has a small set of local addresses
and only one connection to the rest of the internet. For example. default routes work
well in host computers that attach to a single physical network and reach only one
router leading to the remainder of the internet. The routing decision consists of two
tests: one for the local net and a default that points to the only router. Even if the site
contains a few local networks, the routing is simple because it consists of a few tests for
the local networks plus a default for all other destinations.

8.7 Host-Specific Routes

Although we said that all routing is based on networks and not on individual hosts,
most IP routing software allows per-host routes to be specified as a special case. Hav-
ing per-host routes gives the local network administrator more control over network use,
permits testing, and can also be used to control access for security purposes. When de-
bugging network connections or routing tables, the ability to specify a special route to
one individual machine turns out to be especially useful.

8.8 The IP Routing Algorithm

Taking into account everything we have said, the IP algorithm used to forward da-
tagrams becomes:

+Chapter 10 discusses a slightly modified algorithm used with classless IP addresses.



122 Internet Protocol: Routing IP Datagrams Chap. 8

Algorithm:
RouteDatagram ( Datagram, RoutingTable)

Extract destination IP address, D, from the datagram
and compute the network prefix, N;

if N matches any directly connected network address
deliver datagram to destination D over that network
(This involves resolving D to a physical address,
encapsulating the datagram, and sending the frame.)

else if the table contains a host-specific route for D
send datagram to next-hop specified in table

else if the table contains a route for network N
send datagram to next-hop specified in table

else if the table contains a default route
send datagram to the defauit router specified in table

else declare a routing error;

Figure 8.3 The algorithm IP uses to forward a datagram. Given an IP da-
tagram and a routing table, this algorithm selects the next hop to
which the datagram should be sent. All routes must specify a
next hop that lies on a directly connected network.

8.9 Routing With IP Addresses

It is important to understand that except for decrementing the time to live and
recomputing the checksum, IP routing does not alter the original datagram. In particu-
lar, the datagram source and destination addresses remain unaltered; they always specify
the IP address of the original source and the IP address of the ultimate destinationt.
When IP executes the routing algorithm, it selects a new IP address, the IP address of
the machine to which the datagram should be sent next. The new address is most likely
the address of a router. However, if the datagram can be delivered directly, the new ad-
dress is the same as the address of the ultimate destination.

We said that the IP address selected by ihe IP routing algorithm is known as the
next hop address because it tells where the datagram must be sent next. Where does IP
store the next hop address? Not in the datagram; no place is reserved for it. In fact, IP
does not ‘“‘store’’ the next hop address at all. After executing the routing algorithm, IP
passes the datagram and the next hop address to the network interface software respon-
sible for the physical network over which the datagram must be sent. The network in-

1The only exception occurs when the datagram contains a source route option.



Sec. 8.9 Routing With IP Addresses 123

terface software binds the next hop address to a physical address, forms a frame using
that physical address, places the datagram in the data portion of the frame, and sends
the result. After using the next hop address to find a physical address, the network in-
terface software discards the next hop address.

It may seem odd that routing tables store the IP address of a next hop for each des-
tination network when those addresses must be translated into corresponding physical
addresses before the datagram can be sent. If we imagine a host sending a sequence of
datagrams to the same destination address, the use of IP addresses will appear incredi-
bly inefficient. IP dutifully extracts the destination address in each datagram and uses
the routing table to produce a next hop address. It then passes the datagram and next
hop address to the network interface, which recomputes the binding to a physical ad-
dress. If the routing table used physical addresses, the binding between the next hop’s
IP address and physical address could be performed once, saving unneeded computa-
tion.

Why does IP software avoid using physical addresses when storing and computing
routes? As Figure 8.4 illustrates, there are two important reasons.

EXAMINATION OR DATAGRAM
UPDATES OF ROUTES TO BE ROUTED

ROUTING ROUTING ALGORITHM
TABLE IN IP SOFTWARE

1P addresses used

Physical addresses used

DATAGRAM TO BE SENT
PLUS ADDRESS OF NEXT HOP

Figure 8.4 IP software and the routing table it uses reside above the address
boundary. Using only IP addresses makes routes easy to examine
or change and hides the details of physical addresses.

First, the routing table provides an especially clean interface between IP software
that routes datagrams and high-level software that manipulates routes. To debug rout-
ing problems, network managers often need to examine the routing tables. Using only
IP addresses in the routing table makes it easy for managers to understand and to deter-
mine whether software has updated the routes correctly. Second, the whole point of the
Internet Protocol is to build an abstraction that hides the details of underlying networks.



124 Internet Protocol: Routing IP Datagrams Chap. 8

Figure 8.4 shows the address boundarv, the important conceptual division between
low-level software that understands physical addresses and internet software that only
uses high-level addresses. Above this boundary, all software can be written to com-
municate using internet addresses; knowledge of physical addresses is relegated to a few
small, low-level routines. We will see that observing the boundary also helps keep the
implementation of remaining TCP/IP protocols easy to understand, test, and modify.

8.10 Handling Incoming Datagrams

So far, we have discussed IP routing by describing how forwarding decisions are
made about outgoing packets. It should be clear, however, that IP software must pro-
cess incoming datagrams as well.

When an IP datagram arrives at a host, the network interface software delivers it to
the IP module for processing. If the datagram’s destination address matches the host’s
IP address, IP software on the host accepts the datagram and passes it to the appropriate
higher-level protocol software for further processing. If the destination IP address does
not match, a host is required to discard the datagram (i.e., hosts are forbidden from at-
tempting to forward datagrams that are accidentally routed to the wrong machine).

Unlike hosts, routers perform forwarding. When an IP datagram arrives at a
router, it is delivered to the IP software. Again, two cases arise: the datagram could
have reached its final destination. or it may need to travel further. As with hosts, if the
datagram destination IP address matches the router’s own IP address, the IP software
passes the datagram to higher-level protocol software for processingt. If the datagram
has not reached its final destination, IP routes the datagram using the standard algorithm
and the information in the local routing table.

Determining whether an IP datagram has reached its final destination is not quite
as trivial as it seems. Remember that even a host may have multiple physical connec-
tions, each with its own IP address. When an IP datagram arrives, the machine must
compare the destination internet address to the IP address for each of its network con-
nections. If any match, it keeps the datagram and processes it. A machine must also
accept datagrams that were broadcast on the physical network if their destination IP ad-
dress is the limited IP broadcast address or the directed IP broadcast address for that
network. As we will see in Chapters 10 and 17, classless, subnet, and .multicast ad-
dresses make address recognition even more complex. In any case, if the address does
not match any of the local machine’s addresses, IP decrements the time-to-live field in
the datagram header, discarding the datagram if the count reaches zero, or computing a
new checksum and routing the datagram if the count remains positive.

Should every machine forward the IP datagrams it receives? Obviously, a router
must forward incoming datagrams because that is its main function. We have also said
that some multi-homed hosts act as routers even though they are really general purpose
computing systems. While psing a host as a router is not usually a good idea, if one
chooses to use that arrangement, the host must be configured to route datagrams just as
a router does. But what about other hosts, those that are not intended to be routers?

tUsually, the only datagrams destined for a router are those used to test connectivity or those that carry
router management commands, but a router must also keep a copy of datagrams that are broadcast on the net-
work.



Sec. 8.10 Handling Incoming Datagrams 125

The answer is that hosts not designated to be routers should not route datagrams that
they receive; they should discard them.

There are four reasons why a host not designated to serve as a router should refrain
from performing any router functions. First, when such a host receives a datagram in-
tended for some other machine, something has gone wrong with internet addressing,
routing, or delivery. The problem may not be revealed if the host takes corrective ac-
tion by routing the datagram. Second, routing will cause unnecessary network tratfic
(and may steal CPU time from legitimate uses of the host). Third, simple errors can
cause chaos. Suppose that every host routes tratfic, and imagine what happens it one
machine accidentally broadcasts a datagram that is destined for some host, H. Because
it has been broadcast, every host on the network receives a copy of the datagram.
Every host forwards its copy to H, which will be bombarded with many copies. Fourth,
as later chapters show, routers do more than merely route traffic. As the next chapter
explains, routers use a special protocol to report errors, while hosts do not (again, to
avoid having multiple error reports bombard a source). Routers also propagate routing
information to ensure that their routing tables are consistent. If hosts route datagrams
without participating fully in all router functions, unexpected anomalies can arise.

8.11 Establishing Routing Tables

We have discussed how IP routes datagrams based on the contents of routing
tables, without saying how systems initialize their routing tables or update them as the
network changes. Later chapters deal with these questions and discuss protocols that al-
low routers to keep routes consistent. For now, it is only important to understand that
IP software uses the routing table whenever it decides how to forward a datagram, so
changing routing tables will change the paths datagrams follow.

8.12 Summary

IP uses routing information to forward datagrams; the computation consists of de-
ciding where to send a datagram based on its destination IP address. Direct delivery is
possible if the destination machine lies on a network to which the sending machine at-
taches; we think of this as the final step in datagram transmission. If the sender cannot
reach the destination directly, the sender must forward the datagram to a router. The
general paradigm is that hosts send indirectly routed datagrams to the nearest router; the
datagrams travel through the internet from router to router until they can be delivered
directly across one physical network.

When IP software looks up a route, the algorithm produces the IP address of the
next machine (i.e., the address of the next hop) to which the datagram should be sent;
IP passes the datagram and next hop address to network interface software. Transmis-
sion of a datagram from one machine to the next always involves encapsulating the da-
tagram in a physical frame, mapping the next hop internet address to a physical address,
and sending the frame using the underlying hardware.



132 Internet Protocol: Error And Control Messages (ICMP) Chap. 9

ICMP
HEADER ICMP DATA
DATAGRAM
HEADER DATAGRAM DATA AREA
i
FRAME
HEADER FRAME DATA AREA

Figure 9.1 Two levels of ICMP encapsulation. The ICMP message is encap-
sulated in an IP datagram, which is further encapsulated in a
frame for transmission. To identify ICMP, the datagram protocol
field contains the value /.

It is important to keep in mind that even though ICMP messages are encapsulated
and sent using IP, ICMP is not considered a higher level protocol — it is a required part
of IP. The reason for using IP to deliver ICMP messages is that they may need to trav-
el across several physical networks to reach their final destination. Thus, they cannot
be delivered by the physical transport alone.

9.5 ICMP Message Format

Although each ICMP message has its own format, they all begin with the same
three fields: an 8-bit integer message TYPE field that identifies the message, an 8-bit
CODE field that provides further information about the message type, and a 16-bit
CHECKSUM field (ICMP uses the same additive checksum algorithm as IP, but the
ICMP checksum only covers the ICMP message). In addition, ICMP messages that re-
port errors always include the header and first 64 data bits of the datagram causing the
problem.

The reason for returning more than the datagram header alone is to allow the re-
ceiver to determine more precisely which protocol(s) and which application program
were responsible for the datagram. As we will see later, higher-level protocols in the
TCP/IP suite are designed so that crucial information is encoded in the first 64 bits.

The ICMP TYPE field defines the meaning of the message as well as its format.
The types include:



